Ligand rearrangement reactions of Cr(CO)6 in alcohol solutions: experiment and theory.

نویسندگان

  • Jennifer E Shanoski
  • Elizabeth A Glascoe
  • Charles B Harris
چکیده

The ligand rearrangement reaction of Cr(CO)6 is studied in a series of alcohol solutions using ultrafast infrared spectroscopy and Brownian dynamics simulations. Excitation with 266 nm light gives Cr(CO)5 which is quickly solvated by a ligand from the bath. In alcohol solutions, solvation by an alkyl or hydroxyl site can occur; all alkyl bound complexes eventually rearrange to hydroxyl bound complexes. This rearrangement has been described using both an intermolecular (stochastic) and intramolecular (chainwalk) mechanism. Experiments alone do not allow for characterization of the mechanism, and therefore, theoretical calculations were carried out for the first time by modeling the ligand rearrangement as a diffusive walk along a potential defined by the different interaction possibilities. Experiments and simulations were carried out for Cr(CO)6 in 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, 1-pentanol, 2-pentanol, 2-methylbutanol, and 3-methylbutanol. The trends in the theoretical and experimental rearrangement times are similar for all simulations carried out indicating that the two mechanisms have very similar ensemble behavior when bath effects are taken into account. The nature of the mechanism responsible for motion along the alcohol chain is not of primary importance in isolating the kinetic behavior because of the highly diffusive nature of the reaction. Future experimental and theoretical work will be directed at identifying a definitive assignment of the reaction mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtosecond infrared studies of ligand rearrangement reactions: silyl hydride products from Group 6 carbonyls

The ultrafast dynamics of the Si H bond activation reaction by the Group 6 d organometallic compounds M(CO)5 (M=Cr, Mo, and W) have been studied in neat tri-substituted silanes under ambient conditions. The ultrafast spectral evolutions of the CO stretching bands were monitored following UV photolysis using femtosecond pump–probe spectroscopic methods. It was found that the coordinatively unsat...

متن کامل

The electron density analysis of Cr(CO)3L complexes (L=benzene and graphyne)

h6-benzne, h6-garphyne) was studied with MPW1PW91 quantum chemical computations. Quantumtheory of atoms in molecules (QTAIM) was applied to elucidate these complexes Cr-CO bonds. Theellipticity (e) and h values of the Cr-CO bonds were calculated. The amount of pp-dp back-donation ofCr-CO bonds were illustrated by calculation of the magnitude of the quadrupole polarization of c...

متن کامل

Nitromethane - Methyl Nitrite Rearrangement: The Seising of Discrepancy between Theory and Experiment

The potential energy hyper surfaces (FES) of the unimolecular rearrangements of a) Nitromethane itei totrans acknitromethane b) nitrometharie (/) to methyl nitrite (3) and c) naromethane decomposition tomethyl and nitrogen dioxide were searched using the ab !nth° MP2 method. Split valence 6-310(d.p) basisset was used for geometry optimizations, frequency and 1RC computations along each reaction...

متن کامل

Kinetic and thermodynamic study of substituent effect on the Claisen rearrangement of para-substituted SI aryl ether: a Hammett study via DFT

In order to find the susceptibility of the Claisen rearrangement and next proton shift reaction of ally) aryl etherto the substiment effects in pan position, the kinetic and the:rmodynamie parameters are calculated at The33 LTP level using 6-3110. b asis set. The calculated activation energies for the rearrangements and protonshift reactions are around 3133 kcaUmol and 52.16 kcal/mol, nap.. liv...

متن کامل

Evaluating the Performance of 2,3-dihydro-1H-phenothiazine-4(5aH)-one as an Ionophore in Construction of a Cation Selective Electrode by Density Functional Theory

In this study, the complexation of 2,3-dihydro-1H-phenothiazine-4(5aH)-one with 14 various cations were investigated by density functional theory. At the outset, the structures of the ligand, different cations and their derived complexes were optimized geometrically. Then, IR calculations were performed on them in order to acquire the formation enthalpy and Gibbs free energy values. The obtaine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 2  شماره 

صفحات  -

تاریخ انتشار 2006